AES Retirement Resource Adequacy Analysis Update

Status Conference Update | June 21, 2021 Docket 2021-0024

T E L O S E N E R G Y

Stochastic Analysis of Resource Adequacy

- Addresses inter-annual resource variability by using multiple years of solar data in each analysis applied to any future grid
- Generator outages includes planned maintenance plus random maintenance and forced outages based on historical rates
- Capacity shortage for any grid architecture based on hundreds to thousands of years of across possible operation.
- Methodology inherently includes "bad" solar/wind days and even "bad" solar/wind months (see 2006 in chart to right)
- In addition to outage probability, the methodology allows detailed characterization (size and duration) of loss of load events

Loss of Load Hours by Sample with Stage 1 Deployed (512 Monte Carlo Simulations)

Outage Draws

	•					Jula	ge L	raw	5				
	Solar Year	1	2	3	4	5	6	7	8	9	10	11	12
1	1998	0	0	10	3	0	0	2	0	3	6	0	0
	1999	2	0	9	0	3	0	0	0	0	0	3	0
	2000	0	0	0	0	0	0	0	2	0	0	6	0
	2001	0	0	0	2	0	0	0	0	0	0	0	0
	2002	0	0	0	0	0	0	0	6	0	0	0	0
	2003	0	0	1	0	0	0	0	0	0	0	0	1
	2004	0	2	0	0	0	1	0	0	0	0	0	0
l	2005	0	0	0	4	0	0	0	1	0	0	0	0
	2006	0	0	0	0	0	0	0	0	0	0	3	0
5	2007	0	3	0	0	0	2	0	0	0	0	0	0
)	2008	3	0	0	0	0	0	0	5	0	0	0	0
	2009	0	0	2	0	1	0	0	1	0	0	3	0
	2010	0	0	0	0	0	0	0	0	0	0	0	0
	2011	11	0	2	0	0	0	0	0	1	0	3	0
	2012	0	3	0	0	0	0	0	0	0	0	0	0
	2013	2	0	3	3	0	2	0	0	0	0	0	7
	2014	0	0	10	0	0	0	0	0	0	0	0	0
	2015	1	0	0	0	3	0	8	0	0	0	0	0
	2016	0	1	0	2	0	0	0	0	1	0	0	0
	2017	0	0	0	0	0	0	1	1	0	0	0	0
,	2018	0	10	0	0	0	0	0	0	0	0	0	1

Average of outages over all years and outage draws used to characterize annual outage probability

Stage 1 + Stage 2 Schedule Updates

Project Name	Capacity	April Briefing	Current Docket	
Kapolei BESS	185	9/1/2022	10/6/2022 12/27/2022	
AES West Oahu	13	9/7/2022	9/7/2022	
Mililani I	39	11/1/2022	11/1/2022	
Waiawa	36	12/1/2022	12/1/2022	
Kupehau	60	5/1/2023	7/1/2023	
Mountain View	7	5/17/2023	5/17/2023	
Hoohana	52	8/31/2023	8/31/2023	
Waiawa Phase 2	32	10/30/2023	10/30/2023	
Barbers Point	15	12/29/2023	???	
Mahi Solar	120	12/31/2023	9/30/2023	

Current System with AES: Reliability Risk is not Uniform Across the Year.

Risk of LOLE is generally very low from January through June

75% of LOLE risk occurs from August to October

33% of LOLE risk occurs during September

Annualized LOLE of 1.2 d/yr for September is equivalent to approximately one outage every 10 Septembers

Monthly resource adequacy risk (proposed schedules)

Proposed schedules show increased risk during September, normal risk during October/November, low risk afterwards

Probabilistic risk of an event in September increases from once every 10 years to once every 6 years but returns to current risk levels by October

Assumes limited planned maintenance between September – November, 2022

Increased risk in September can be fully mitigated by an additional 36 MW of PV+storage, storage alone, demand response, or alternative generation by Sept 1

"Typical" outage most likely to be less than 30MW for one hour.

** Acceleration of Mililani I or Waiawa to before September 1 returns system to current level of risk

What does 'typical' shortfall look like?

Based on modeled grid reliability Sept 2022 – Aug 2023.

AES Retired, no KES, 50 MW PV+BESS

Oahu RA Analysis with Schedule Updates

600

Capacity need is based on meeting either the current system reliability level or annual target, whichever is higher *Results from March 16th briefing updated using larger sample size (N = 1008)

Summary

- Without mitigation, retirement of AES increases risk of an outage in September from once every 10
 "Septembers" to once very 6 "Septembers".
- Any delay in AES West Oahu will increase the September risk to once every 5 Septembers
- Accelerating <u>any</u> project of ~40MW or more to be online before Sept 1 (in addition to AES solar), will return risk to that of current system.
- Proposed solar or Kapolei BESS would provide sufficient reserves from Nov '22 through Jun '23.
- If Kapolei BESS is delayed until Summer '23 the schedule for Stage 1 and Stage 2 becomes more critical.
- Proposed earlier GCOD for Mahi solar important if Kapolei BESS is delayed thru 2023 but is not critical for reliability if BESS is online.
- Preliminary analysis (not shown) indicates full deployment of Stage 1, 2 and KES BESS would allow for reliable retirement of Waiau 3, 4, 5 & 6

FILED

2021 Jun 21 AM 07:55

PUBLIC UTILITIES
COMMISSION

The foregoing document was electronically filed with the State of Hawaii Public Utilities Commission's Document Management System (DMS).